skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Xuanpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban air quality and the impact of mobile source pollutants on human health are of increasing concern in transportation studies. Existing research often focuses on reducing traffic congestion and carbon footprints, but there's a notable gap in understanding the health impacts of traffic from an environmentally-just perspective. Addressing this, our paper introduces an integrated simulation platform that models not only traffic-related air quality but also the direct health implications at a microscopic level. This platform integrates five modules: SUMO for traffic modeling, MOVES for emissions modeling, a 3D grid-based dispersion model, a Matlab-based visualizer for pollutant concentrations, and a human exposure model. We emphasize the transportation-health pathway, examining how different mobility strategies impact human health. Our case study on multimodal on-demand services demonstrates that a distributed pickup strategy can reduce cancer risk from PM 2 . 5 exposure by 33.4% compared to centralized pickup. This platform offers insights into traffic-related air quality and health impacts, providing valuable data for improving transportation systems and strategies with a focus on health outcomes. 
    more » « less
  2. Connected and automated vehicles (CAVs) provide various valuable and advanced services to manufacturers, owners, mobility service providers, and transportation authorities. As a result, a large number of CAV applications have been proposed to improve the safety, mobility, and sustainability of the transportation system. With the increasing connectivity and automation, cybersecurity of the connected and automated transportation system (CATS) has raised attention to the transportation community in recent years. Vulnerabilities in CAVs can lead to breakdowns in the transportation system and compromise safety (e.g., causing crashes), performance (e.g., increasing congestion and reducing capacity), and fairness (e.g., vehicles fooling traffic signals). This paper presents our perspective on CATS cybersecurity via surveying recent pertinent studies focusing on the transportation system level, ranging from individual and multiple vehicles to the traffic network (including infrastructure). It also highlights threat analysis and risk assessment (TARA) tools and evaluation platforms, particularly for analyzing the CATS cybersecurity problem. Finally, this paper will provide valuable insights into developing secure CAV applications and investigating remaining open cybersecurity challenges that must be addressed. 
    more » « less
  3. Freeway ramp merging is a challenging task for an individual vehicle (in particular a truck) and a critical aspect of traffic management that often leads to bottlenecks and accidents. While connected and automated vehicle (CAV) technology has yielded efficient merging strategies, most of them overlook the differentiation of vehicle types and assume uniform CAV presence. To address this gap, our study focuses on enhancing the merging efficiency of heavy-duty trucks in mixed traffic environments. We introduce a novel multi-human-in-the-loop (MHuiL) simulation framework, integrating the SUMO traffic simulator with two game engine-based driving simulators, enabling the investigation of interactions between human drivers in diverse traffic scenarios. Through a comprehensive case study analyzing eight scenarios, we assess the performance of a connectivity-based cooperative ramp merging system for heavy-duty trucks, considering safety, comfort, and fuel consumption. Our results demonstrate that guided trucks exhibit advantageous characteristics, including an enhanced safety margin with larger gaps by 23.2%, a decreased speed deviation by 30.4% facilitating smoother speed patterns, and a reduction in fuel consumption by 3.4%, when compared with non-guided trucks. This research offers valuable insights for the development of innovative approaches to improve truck merging efficiency, enhancing overall traffic flow and safety. 
    more » « less
  4. Connected and automated vehicles (CAVs) are sup- posed to share the road with human-driven vehicles (HDVs) in a foreseeable future. Therefore, considering the mixed traffic envi- ronment is more pragmatic, as the well-planned operation of CAVs may be interrupted by HDVs. In the circumstance that human behaviors have significant impacts, CAVs need to under- stand HDV behaviors to make safe actions. In this study, we develop a driver digital twin (DDT) for the online prediction of personalized lane-change behavior, allowing CAVs to predict surrounding vehicles’ behaviors with the help of the digital twin technology. DDT is deployed on a vehicle-edge–cloud architec- ture, where the cloud server models the driver behavior for each HDV based on the historical naturalistic driving data, while the edge server processes the real-time data from each driver with his/her digital twin on the cloud to predict the personalized lane- change maneuver. The proposed system is first evaluated on a human-in-the-loop co-simulation platform, and then in a field implementation with three passenger vehicles driving along an on/off ramp segment connecting to the edge server and cloud through the 4G/LTE cellular network. The lane-change intention can be recognized in 6 s on average before the vehicle crosses the lane separation line, and the Mean Euclidean Distance between the predicted trajectory and GPS ground truth is 1.03 m within a 4-s prediction window. Compared to the general model, using a personalized model can improve prediction accuracy by 27.8%. The demonstration video of the proposed system can be watched at https://youtu.be/5cbsabgIOdM. 
    more » « less
  5. Abstract—Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-world object perception system for 3D object detection, tracking, localization, and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: i) the data pre-processor to retrieve and preprocess the raw data; ii) the roadside 3D object detector to generate 3D detection results; iii) the multi-object tracker to identify detected objects; iv) the global locator to generate geo-localization information; v) the mobile-edge-cloud-based communicator to transmit perception information to equipped vehicles, and vi) the onboard advisor to reconstruct and display the real-time traffic conditions. An automatic perception evaluation approach is proposed to support the assessment of data-driven models without human-labeling requirements and a CMM field-operational system is deployed at a real-world intersection to assess the performance of the CMM. Results from field tests demonstrate that our CMM prototype system can achieve 96.99% precision and 83.62% recall for detection and 73.55% ID-recall for tracking. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with a root-mean-square error (RMSE) of 0.69m and 0.33m for lateral and longitudinal direction, respectively, and displayed on the GUI of the equipped vehicle with a frequency of 3 − 4Hz. 
    more » « less